
Resilient Investment and 
Operation in Power Systems 

Dr. Rodrigo Moreno 

University of Chile 

CIGRE Workshop, March 27th 2017 
Gestión de Riesgos en la Planificación y Operación del Sistema Eléctrico 

1 



Conicyt-RCUK Project:  
Disaster Management and 

Resilience in Electric Power Systems 

Project workshop: Tue March 28th, 8.30am-11:00am,  
Beauchef 851, DII (sala 314) 

2 



Table of contents 

• Definitions 
 

• Methodology 
 

• Illustrative example 
 

• Large-system examples 
 

• Conclusions 
 

3 



Resiliency is dynamic 

Panteli, M., & Mancarella, P. (2015). The grid: Stronger, bigger, smarter?: Presenting a conceptual framework of power 
system resilience. IEEE Power and Energy Magazine, 13(3), 58-66. 

4 



Resiliency focuses on catastrophic, 
HILP events 
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Strbac, G., Kirschen, D., & Moreno, R. (2016). Reliability Standards for the Operation and Planning of Future Electricity 
Networks. Foundations and Trends® in Electric Energy Systems, 1(3), 143-219. 

How do HILP events 
affect operation and 

investment? 

-Natural hazards 
-Catastrophic events 
-Common mode failures 
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Risk assessment methodology 
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Optimising resiliency in operation and 
planning 

Risk assessment 
-Primary event simulation 
-Outage simulation 
-Post-fault, real-time 
optimisation (minimising X) 

Operation 
-Pre-fault optimisation 
(minimising O+X w/CVaR) 
-Planned power per unit 
-Planned reserve per unit 

Investment 
-New infrastructure 
(minimising T+O+X w/CVaR) 
-Various demand scenarios 
- 

There are multiple optimisation techniques to coordinate the 
iterations and ensure delivery of “very good” and even optimal 

decisions (e.g., genetic algorithms, Benders cuts) 
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HILP ability to affect operation 
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Resilient network operation 
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Resilient investment against flooding 
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Design 
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Resilient reactive power investment 
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Different mitigation/adaptation strategies 
in SING (1) 
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Different mitigation/adaptation strategies 
in SING (2) 
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Figure 3.  Results of study cases in terms of: (a) return period of events exceeding certain EIU values; and (b) CDFs of accumulated ENS for 10 and 50 years.

TABLE II.  EXPECTED ANNUAL LOSS FOR ADAPTATION CASES WITH 95% 

CONFIDENCE INTERVALS  

IV. CONCLUSIONS AND FUTURE WORK 

This work presented a classification for different types of 
system risk analyses for electric power systems. A seismic 
resilience assessment and adaptation framework was then applied 
to the electric network of northern Chile. This represented a 
challenge due to the multi-disciplinary work required. The 
methodology uses Monte Carlo Simulations to stochastically 
generate earthquake scenarios and operates the system with DC-
OPF while computing the resilience of the system to all scenarios 
in terms of Energy not Supplied and Energy Index of Unreliability 
during the first week following each seismic event. Finally, three 
adaptation strategies are evaluated. 

It is important to highlight that this analysis summarises the 
impacts of earthquakes of various magnitudes and frequencies on 
the security of energy supply. Hence, one can determine the 
effectiveness of adaptation strategies considering events with 
various probabilities and impacts, such as Low Impact High 
Probability events (those that happen several times in a decade) 
and High Impact Low Probability (HILP) events (those that 
happen once in a century/millennium). Thus moving away from 
the focus on “average” indicators (e.g. expected energy not 
supplied, which is widely used in power systems) towards 
effective risk/resilience assessment. This is critical for planners 
and policy makers who are risk-averse and prefer robust solutions 
that are tested using risk analyses that include all possible 
scenarios than those effective only under a specific event. 

Ongoing developments and future works include evaluating the 
adaptation strategies using cost-benefit analysis, considering 
seismic aftershocks and tsunami hazards, and incorporating more 
complex dispatch models. 
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Study case EAL (GWh) EAL (%) 
100-year 

loss (GWh) 
1,000-year loss 

(GWh) 

Base 4.90 ± 0.21 1.46 ± 0.06 33.4 ± 1.1 77.1 ± 1.5 

Robustness 1.52 ± 0.08 0.45 ± 0.02 13.1 ± 0.9 47.6 ± 2.0 

Redundancy 3.13 ± 0.14 0.93 ± 0.04 25.3 ± 0.9 68.0 ± 2.4 

Responsiveness 3.91 ± 0.17 1.17 ± 0.05 29.4 ± 1.1 71.0 ± 2.0 



Conclusions 

• Resilience is a dynamic concept 

• Resilience goes beyond N-1 and consider 
conditional outages given a common event 

• Multiple outages happen simultaneously 

• We developed a mathematical programming 
methodology for decision making 

• We demonstrated that HILP impacts 
significantly on operation and design 
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