

MANITOBA HVDC RESEARCH CENTRE, a Division of Manitoba Hydro International Ltd.

CIGRÉ Chile - TRV Experience

November 2017

Presented by: Arash Darbandi, P.Eng.

Presentation Outline

- History of Manitoba HVDC Research Centre
- Importance of EMT modeling for TRV investigation.
- Manitoba HVDC Research Centre's past TRV **Experiences**

Divisions of MHI

MHRC Corporate History

Scope of Business

Training

PSCAD and advanced power systems topics including HVDC, SVC, and FACTS

Engineering

Innovative, specialized solutions for power system community

R&D

Worldwide research partnership & long standing strategic technology alliance

Simulation Developers

Setting the standard for the transient simulation

Design & Testing

Hardware design and testing services

Simulation studies for power system operation:

- Load flow (steady state 50/60 Hz)
- Transient stability (slow variations- electro-mechanical)
- Small signal stability (operating point)
- Fault studies
- Electromagnetic transient studies (fast transients)

Transient vs. Steady State Solutions

<u>Load Flow / Transient</u> <u>Stability</u>

 Each solution based on phasor calculation

$$V(\omega) = (R + j\omega L) \times I(\omega)$$

Electromagnetic Transients

 Direct time domain solution of differential equations

$$v(t) = R \cdot i(t) + L \cdot \frac{d}{dt}i(t)$$

Transient vs. Steady State Solutions

<u>Load Flow / Transient</u> <u>Stability Tools</u>

- Valid only for steady state and low frequency swings
- Simplified controls (approximated as S functions)
- Steady state equations for HVDC
- Efficient for large systems

Electromagnetic Transients Tools PSCAD

- Valid over a wide frequency range
- Detailed analog and digital controls
- Detailed switching of thyristors, diodes, GTO's
- Harmonics
- Transient over-voltages, lightning impulses
- Machine dynamics

Importance of EMT modeling: Time scales of power system phenomena

Importance of EMT modeling: Time scales of power system phenomena

Class	Low frequency		Transient		
	Continuous	Temporary	Slow-front	Fast-front	Very-fast-front
Voltage or over- voltage shapes	$ \begin{array}{c} $	1/f Tt	T_{p} T_{2}		1/f ₁ 1/f ₂
Range of voltage or over- voltage shapes	f = 50 Hz or 60 Hz $T_t \ge 3 600 \text{ s}$	10 Hz < f < 500 Hz 0,03 s $\leq T_{t}$ \leq 3 600 s	$20 \mu s < T_p$ $\leq 5 000 \mu s$ $T_2 \leq 20 ms$	0,1 μs < T ₁ ≤ 20 μs T ₂ ≤ 300 μs	$3 \text{ ns} < T_{\text{f}} \le 100 \text{ ns}$ $0,3 \text{ MHz} < f_{1}$ < 100 MHz $30 \text{ kHz} < f_{2}$ < 300 kHz

Importance of EMT modeling:

Modeling Considerations:

- TRV is a 'fast event' (10s of kHz)
- The impact of a transient is limited to a local area of the station
- Circuit components of the station has a major impact of TRV (bushing capacitances of equipment)
- The 'remote system' (1-2 buses away) generally has no impact on overall TRV response.
- It is important to represent station equipment layout/capacitances for TRV studies

Importance of EMT modeling:

Modeling Considerations:

Detailed station modelling

Schematic Diagram

PSCAD/EMTDC Model

Typical Applications – Switching and Insulation Coordination

- Transmission line and equipment switching (SOV)
- Over voltages caused by lightning strikes (LOV)
- Transformer energizing –Inrush and harmonic resonance
- Capacitor bank switching
- Circuit breaker Transient Recovery Voltage (TRV)
- Temporary over voltage studies (TOV)
- Ferro resonance

A Typical Electromagnetic Transient

Engineering Services Capabilities

MHRC offers customized and reliable solutions to assist clients during pre- and post-award stages of a project

MHRC can provide the training, tools, and assistance at any stage of your project.

- Conceptual evaluation
- Preparation of specifications and bid evaluations, as well as design review
- Engineering studies
- Factory acceptance testing support
- Construction support
- Commissioning support
- Operations and maintenance support

- Performed a significant number of TRV studies globally.
- The voltage range goes from 11 kV to 500 kV.
- TRV studies include,
 - Breakers on the overhead transmission lines.
 - Breakers on the underground/submarine cables.
 - Breakers on the generating stations.
 - Breakers on the series compensated lines.

- We have provided solutions to TRV issues for different applications, i.e.
 - Design of surge limiting capacitance
 - Surge arrester characteristic selection to mitigate peak TRV issues seen with the series compensated lines.
 - Placement of CCVTs in the station to limit the TRV rate of rise

- Selected studies include:
 - Saudi Electricity Company:
 - Over 50 TRV studies in past 5 years for 380 kV stations.
 - Breaker TRV considerations during reactor switching
 - Breaker TRV during station faults, remote faults and short line faults

- Selected studies include:
 - ENMAX Alberta Canada:
 - Over 10 TRV studies for 11 kV to 230 kV stations.
 - Manitoba Hydro Canada:
 - Over 10 TRV studies for 13.8 kV to 25 kV generation station.
 - Pacific Gas & Electric Company USA
 - TRV studies for 230 kV and 500 kV lines in California, USA

- Selected studies include:
 - Red Electrica De Espana Spain:
 - TRV studies for 345 kV series reactor.
 - Designed the TRV limiting capacitors that would be required for this installation.
 - TRV studies for over 10 wind farms in Texas USA.
 - TRV studies for a 1200 MW offshore wind farms with long ac cables in UK.

- Selected studies include:
 - TRV studies for ABB high voltage GIS substations at different locations globally – under contract with ABB Switzerland.
 - TRV studies for ALSTOM/GE high voltage substation at different locations globally.

Thank you

www.hvdc.ca