

Ministerio de Energía

Desafíos de la Planificación **Energética de Largo Plazo**

Javier Bustos Salvagno

Abrill 2018

Agenda

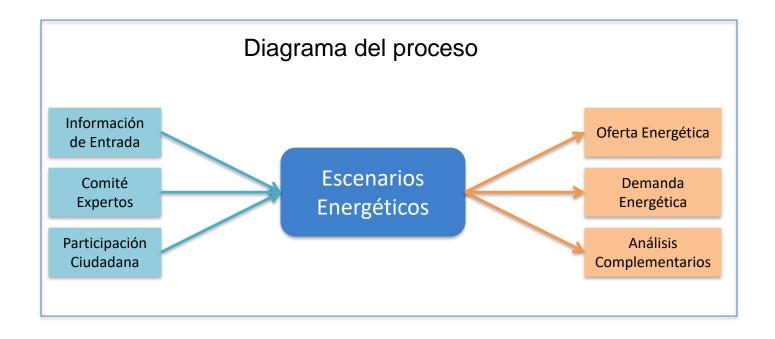
- Objetivo de la PELP
- Planificación energética de largo plazo en la práctica
- Desafíos del primer proceso
- Mejoras a implementar

Objetivo de la PELP

Entregar **Escenarios Energéticos** que contengan tendencias y comportamiento del consumo y de la oferta de energía que el país podría enfrentar en el futuro, de modo que **sean considerados en la planificación de los sistemas de transmisión eléctrica** que llevará a cabo la Comisión Nacional de Energía.

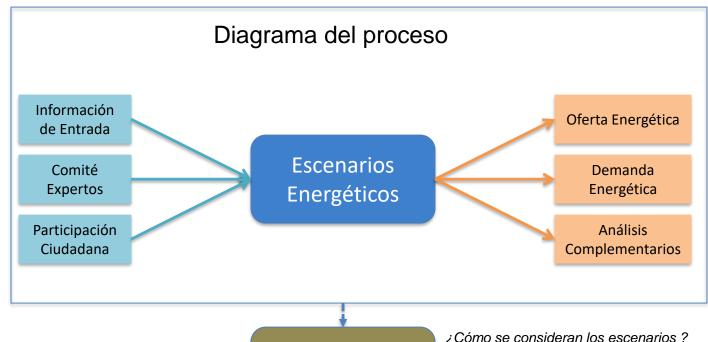
PLANIFICACIÓN ENERGÉTICA DE LARGO PLAZO EN LA PRÁCTICA

Planificación Energética de Largo Plazo



Proceso de mejora continua

Planificación Energética de Largo Plazo



Planificación de

la Tx (CNE)

¿Cómo se consideran los escenarios ?

¿Cómo escala los resultados de acuerdo a su proyección de demanda?

¿Cómo considera el plan de obras de generación?

DESAFÍOS DEL PRIMER PROCESO

Fuentes de información publicas disponibles

- Valor inicial como promedio nacional
- Proyecciones coherentes hasta el 2046

Tecnologías Renovables

- Actualización de metodología para definir los potenciales
- Generación de perfiles horarios para cada central renovable variable
- Incorporación de nuevas tecnologías (hidrobombeo, CSP, baterías)

Energéticos

Escenarios

Oferta Energética

Demanda Energética

Análisis Complementarios

Combustibles

- Fuente validada para proyecciones hasta el 2046
- Disponibilidad de combustible para centrales a GNL

Insumos Sectoriales

- Información no recogida dentro del Balance Nacional de Energía
- Información del sector transporte desactualizada
- Información limitada del uso final residencial

Comité Expertos Escenarios Energéticos Oferta Energética

Demanda Energética

Análisis Complementarios

Aportando desde su ángulo de experiencia

Capacidad de discutir con visión de futuro

- aquellos temas que tengan mayor impacto en el sector
- Variedad de puntos de vista y sectores en la conformación el comité

- Administrar la gran cantidad de inscritos
- Buscar siempre una mayor cantidad de sectores representados
- Buscar que todas las instituciones relevantes participen dentro del proceso
- Responder a cada consulta realizada a lo largo del proceso, que validan y transparentan las propuestas y resultados

- Identificar parámetros que tengan relevancia en el sector y que puedan tener alto impacto en el futuro
- Generación de tendencias a través de drivers o intensificación de medidas existentes
- Creación de escenarios coherentes

- Modelo de demanda limitado a la información disponible
- Modelo eléctrico de planificación no incluye las restricciones de corto plazo
- Modelo de planificación no determina la necesidad de flexibilidad o de almacenamiento en el futuro
- Modelo de generación distribuida enfocado en el sector residencial

Información de Entrada

> Comité Expertos

Participación Ciudadana Escenarios Energéticos

Matriz eléctrica

- Validación de los resultados por parte del mercado
- Ajuste de metas de generación renovable

Energética

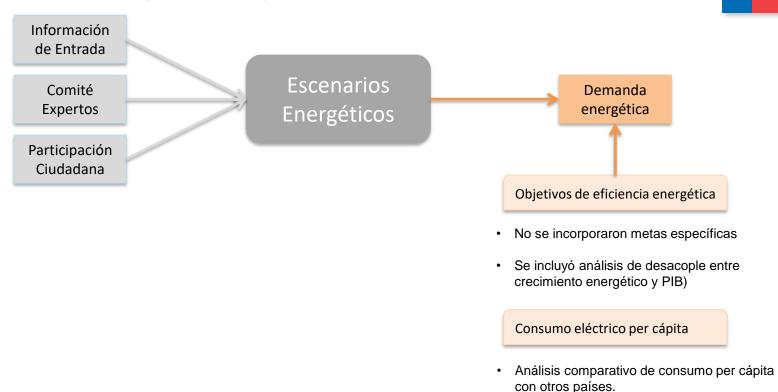
Oferta

Capacidad abastecimiento GNL

- Determinar capacidad de regasificación actuales
- Analizar potenciales terminales en otras zonas

Combustibles complementarios

- Estimar efectos de las medidas de eficiencia energética respecto a la leña
- No existían análisis de factibilidad y de costos de producción para el hidrogeno



Información de Entrada

> Comité Expertos

Participación Ciudadana Escenarios Energéticos

Generación distribuida

 ¿Con qué criterios sensibilizar la penetración de generación distribuida residencial?

Integración Regional

- Beneficios de swaps de GNL con Argentina
- Traspaso de excedentes eléctricos con Perú y Argentina

Cambio climático

 Poca información respecto al efecto del CC en el sistema eléctrico nacional

Análisis complementarios

- Cumplimiento de metas acuerdo COP21
- Efectos de diferentes impuestos de CO2

Disponibilidad de GNL para generación

 ¿Cómo estimar qué centrales y cuánto GNL dispondrán en el futuro?

Polos de desarrollo

- No se determinaron en el primer proceso
- Criterios actuales
 - Las zonas recomendadas deben ser de tecnologías eólica terrestre, hidráulica y/o geotérmica
 - Las zonas recomendadas no deben estar próximas a los sistemas de transmisión existentes
 - La puesta en marcha de las zonas recomendadas debe ser entre los años 2025 y 2044
 - Las zonas recomendadas deben encontrarse en los planes de obras de al menos 3 escenarios
- ¿Es necesario revisarlos?
 - Analizar externalidades positivas que puedan ayudar a definir polos (ej. Complementariedad eólica e hidráulica)

MEJORAS A IMPLEMENTAR

Información de entrada

- <u>Costos de inversión:</u> trabajo continuo con la CNE y el Coordinador para lograr una mayor representación nacional
- <u>Tecnologías renovables:</u> mejora continua de la estimación de potenciales e inclusión de nuevas tecnologías, como mareomotriz y biomasa
- <u>Insumos sectoriales:</u> coordinación con otros sectores para la generación de información de demanda de energía para el sector transporte, comercial y agroindustrial

Escenarios energéticos

- Escenarios: incluir otros factores de incertidumbre para generar escenarios representativos
- <u>Modelos:</u> mejorar la metodología para incluir los efectos de la transmisión y restricciones de corto plazo (símil a metodología utilizada por el Coordinador); mejora continua del modelo de demanda (trabajo con CNE y Coordinador)

Oferta Energética

- <u>Planes de obras de generación</u>: trabajo conjunto con la CNE para la integración de los planes de obras de generación para el proceso de expansión de la transmisión.
- <u>Análisis de largo y corto plazo:</u> estudiar una metodología para retroalimentar la expansión de la generación

Mejoras para el siguiente proceso

Demanda energética

- <u>Validación:</u> transparentar el modelo de demanda para recibir comentarios que apoyen la robustez de los resultados.
- Dinamismo de los sectores: Incorporación de nuevas tecnologías en cada sector
- Autogeneración: Mejorar el flujo de información entre el modelo energético y eléctrico

Análisis complementarios

- Resiliencia: Incorporar otras variables asociadas al concepto, además del cambio climático
- <u>Generación distribuida:</u> crear un modelo que estime la penetración del sector industrial y comercial.
- <u>Perfil de demanda</u>: Visualizar los efectos horarios de una mayor penetración de generación distribuida y electromovilidad sobre el perfil de la demanda y posibles impactos sobre la infraestructura eléctrica de distribución.

Trabajo en desarrollo

- Costos de Inversión
- Costos de transmisión y modelación
- Modelo de demanda
- Modelo de generación distribuida
- Potenciales y perfiles renovables
- Parámetros técnicos de las centrales
- Modelo de demanda
- Metodología de planificación eléctrica
- Recomendaciones de otras herramientas utilizadas internacionalmente
- Compartir experiencias internacionales sobre planificación energética

Conclusiones

