

Power System Resilience to Extreme Weather: Fragility Modelling, Probabilistic Impact Assessment and Adaptation Measures

Dr Mathaios Panteli

Lecturer in Power Systems

The University of Manchester

CIGRE Workshop Santiago, Chile, 27th March 2017

Outline

- 1. Introduction
- 2. Probabilistic Impact Assessment of Extreme Weather
- 3. "ΦΛΕΠ" Resilience Metric System
- 4. Conclusions

Outline

1. Introduction

- 2. Probabilistic Impact Assessment of Extreme Weather
- 3. "ΦΛΕΠ" Resilience Metric System
- 4. Conclusions

Introduction

Power systems have been traditionally designed to be reliable to the so-called **typical** or **credible** events, i.e. N-1 or N-2 outages

However, what if a "black swan" event occurs?

- Are the traditional average indices (e.g. EENS, LOLF, etc.) sufficient?
- How do we quantify the impact of these extreme events?
- What characteristics should the quantification metrics have?

Need to move towards resilience-thinking and engineering

Introduction (cont.)

Outline

- 1. Introduction
- 2. Probabilistic Impact Assessment of Extreme Weather
- 3. "ΦΛΕΠ" Resilience Metric System
- 4. Conclusions

Bi-level generic procedure:

Component Fragility to the Hazard

System Resilience Assessment

Component Approach for Determining the Effect of a Hazard

System Approach for Resilience Assessment

<u>Inputs</u>

- Hazard Profile
- Fragility Curves

Simulation:

- Sequential Monte Carlo
- Spatiotemporal analysis
- Record system information every simulation step

Outputs

Calculation of resilience metrics

Time- and Hazard-dependent Failure Probability

Time- and Hazard-dependent Failure Function

$$F(h_i) = \begin{cases} 0, & \text{if } P(h_i) < r \\ 1, & \text{if } P(h_i) > r \end{cases}$$

r = uniformly distributed number

Case Study Application

The 29-bus test version of the GB transmission network

Test Network:

- 29 nodes
- 98 overhead transmission lines in double circuit configuration and one single circuit transmission line
- 65 generators with an installed capacity of 75.3GW

Hazard:

- Severe windstorms (with maximum wind speeds up to 60m/s)
- Duration of hazard: 1 week

Resilience Metrics:

- Expected Energy Not Served (EENS)
- Loss of Load Frequency (LOLF)

Resilience Achievement Worth: $RAW = \frac{R_s - R_s(R_n = 1)}{R_s} \times 100$

This is good, but:

No information is provided on how the system actually responded during the event or what we can do to improve its robustness and recovery...

A more dynamic, multi-phase assessment of the system resilience is required!

Outline

- 1. Introduction
- 2. Probabilistic Impact Assessment of Extreme Weather
- 3. "ΦΛΕΠ" Resilience Metric System
- 4. Conclusions

"ΦΛΕΠ" Resilience Metric System

Conceptual Resilience Trapezoid Associated to an Event

how fast resilience declines? **♦** how low resilience drops? **♦**

how extensive is this state? **E**

how promptly does the network recover?

Distinguishing operational and infrastructure resilience...

Operational resilience:

refers to the characteristics that would secure operational strength for a power system

Infrastructure resilience:

refers to the physical strength of a power system for mitigating the portion of the system that is damaged, collapsed or in general becomes nonfunctional.

Resilience Indicators:

Operational Resilience: the amount of generation capacity (MW) and load demand (MW) that are connected during the event

Infrastructure Resilience: the number of online transmission lines

The University of Manchester

Mathematical Expression of Trapezoid Areas

Trapezoid	Mathematical Expression		
Area	Operational	Infrastructure	
$Area_{I}$	$\frac{A_{ ext{operational}} \bullet_{windstorm}}{2}$	$rac{arLambda_{ ext{infrastruc ture}}oldsymbol{\psi}_{wi ndstorm}}{2}$	
$Area_{II}$	$A_{ m operational}$ ${f Q}\!E_{ m operational}$	$arLambda_{ ext{infrastructure}}$ $oldsymbol{\partial E}_{ ext{infrastructure}}$	
$Area_{III}$	$rac{A_{ m operational} igoldsymbol{Q} (T_{or} - t_{or})}{2}$	$rac{arLambda_{ ext{infrastructure}} igotimes T_{ir} - t_{ir})}{2}$	

The $\Phi \Lambda E \Pi$ Resilience Metric System

Phase	State	Resilience metric	Symbol
I	Disturbance progress	How <i>fast</i> resilience drops? How <i>low</i> resilience drops?	$\Phi \ arLambda$
II	Post-disturbance degraded	How <i>extensive</i> is the post-disturbance degraded state?	E
III	Restorative	How <i>promptly</i> does the network recover?	П

Mathematical Formulation of Resilience Metrics

Metric	Mathematical Expression		Measuring Unit	
	Operational	Infrastructure	Operational	Infrastructure
Φ	$\frac{R_{pdo}-R_{0o}}{t_{ee}-t_{oe}}$	$rac{R_{pdi}-R_{0i}}{t_{ee}-t_{oe}}$	MW/hours	Number of lines tripped/hours
Λ	$R_{\it 0o}-R_{\it pdo}$	$R_{0i}-R_{pdi}$	MW	Number of lines tripped
E	$t_{or}-t_{ee}$	$t_{ir}-t_{ee}$	Hours	Hours
П	$rac{R_{oo}-R_{pdo}}{T_{or}-t_{or}}$	$\frac{R_{0i}-R_{pdi}}{T_{ir}-t_{ir}}$	MW/hours	Number of lines restored/hours
Area	$R_{op}(t)dt$	$R_i(t)dt$	MW×hours	(Number of lines in service)×hours

The University of Manchester

Resilience indicators for windstorms with maximum wind speed 40, 50 and 60m/s

The **\$\phi\$**-metric: how fast resilience drops

Event		Resilience Indicator	r
Event	Trans. lines	Gen. Connected	Load Connected
$WS_{40m/s}$	-0.2500	-0.0125	-0.0024
$WS_{50m/s}$	-1.0833	-0.521	-0.249
$WS_{60m/s}$	-2.0833	-1.5876	-0.6668

The **∧**-metric: how low resilience drops

Adaptation Strategies:

Robust: the transmission lines and towers are made 20% more and less robust to the windstorm, by adjusting the fragility curves

Response: the responsiveness to the weather event is made 20% better and worse.

Resources: evaluate the effect of unlimited number of repair crews, 5, 10 and 15 is evaluated.

The University of Manchester

Focusing on the windstorm with maximum wind speed 50m/s

The ϕ -metric (robust case scenario)

Event	Resilience Indicator			
Event	Trans. lines	Gen. Connected	Load Connected	
20% Less Robust	-2.2083	-1.8083	-0.7132	
Base	-1.0833	-0.521	-0.249	
20% More Robust	-0.2500	-0.0121	-0.0117	

The *E*-metric (response case scenario)

	Duration of post-event degraded state			-
Case study	Transmission			
	lines	Generation Capacity	Load	
20%MoreResponse	44	47	48	
Base	53	54	57	
20%LessResponse	76	80	83	

The **^**-metric (robust case scenario)

The **n**-metric (response and resources case scenarios)

Case Study	Resilience indicator			
Case Study	Trans. lines	Gen. Connected	Load Connected	
5 RCs	0.0128	0.0060	0.0026	
10 RCs	0.0137	0.0069	0.0039	
15 RCs	0.019	0.0148	0.0076	
20%LessResponse	0.0455	0.0266	0.0111	
Base	0.0578	0.0330	0.0724	
20%MoreResponse	0.0925	0.0354	0.0925	

The University of Manchester

Calculating the **area** metric (using the indicator transmission lines for 50m/s):

Robust Case Scenario

Response and Resources
Case Scenarios

Resilience assessment to multiple, successive windstorms:

Base Scenario: five-day interval between the two events with maximum wind speed 50m/s, i.e., the first event is applied at 50h and the second event at 170h, both with a 24h duration

Scenario 1 (SC1): as base scenario, but different intensity of the windstorms - the maximum wind speed of the first windstorm is 50m/s and of the second 60m/s

Scenario 2 (SC2): as base scenario, but improving the responsiveness by 20%

Scenario 3 (SC3): as base scenario, but improving the robustness by 20%

Outline

- 1. Introduction
- 2. Probabilistic Impact Assessment of Extreme Weather
- 3. "ΦΛΕΠ" Resilience Metric System
- 4. Conclusions

Conclusions

The University of Manchester

- Need to shift from the traditional reliability-oriented paradigms to more resilienceoriented engineering
- Determine the **threshold** for which the network becomes less resilient and perform **criticality ranking**.
- Novel resilience metric system capable of modelling and quantifying the actual response of a system exposed to extreme weather and natural hazards.
- Development and impact quantification of different adaptation strategies

Moving Forward

- Development of adaptive reinforcement strategies for boosting future power systems resilience
- Evaluate the contribution of smart grid technologies, complemented by a cost/benefit analysis

Related Research Papers

The University of Manchester

- M. Panteli and P. Mancarella, "The Grid: Stronger, Bigger, Smarter? Presenting a Conceptual Framework of Power System Resilience", *IEEE Power and Energy Magazine*, vol. 13, no. 3, pp. 58-66, 2015 May/June issue
- M. Panteli and P. Mancarella, "Modelling and Evaluating the Resilience of Critical Electrical Power Infrastructure to Extreme Weather Events", Early access article, IEEE Systems Journal, February 2015
- **M. Panteli** and P. Mancarella, "Influence of Extreme Weather and Climate Change on the Resilience of Power Systems: Impacts and Possible Mitigation Strategies", *Electric Power Systems Research*, vol. 127, pp. 259-270, October 2015
- **M. Panteli**, D.N. Trakas, P. Mancarella, and N.D. Hatziargyriou, "Boosting the Power Grid Resilience to Extreme Weather Events Using Defensive Islanding", *IEEE Transactions on Smart Grid*, Special issue on "Power Grid Resilience", vol. 7, no. 6, pp. 2913-2922, March 2016
- S. Espinoza, **M. Panteli**, P. Mancarella, and H. Rudnick, "Multi-phase assessment and adaptation of power systems resilience to natural hazards", *Electric Power Systems Research*, vol. 136, pp. 352-361, July 2016.
- **M. Panteli**, P. Mancarella, C. Pickering, S. Wilkinson, and R. Dawson, "Power System Resilience to Extreme Weather: Fragility Modelling, Probabilistic Impact Assessment, and Adaptation Measures", *IEEE Transactions on Power Systems*, Early Access, December 2016
- **M. Panteli**, P. Mancarella, D. N. Trakas, E. Kyriakides, and N. D. Hatziargyriou, "Metrics and Quantification of Operational and Infrastructure Resilience in Power Systems", *IEEE Transactions on Power Systems*, Early Access, February 2017

27